Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments
نویسندگان
چکیده
The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.
منابع مشابه
Girds 'n' cleeks o' cytokinesis: microtubule sticks and contractile hoops in cell division.
Microtubules maintain an intimate relationship with the rings of anillin, septins and actomyosin filaments throughout cytokinesis. In Drosophila, peripheral microtubules emanating from the spindle poles contact the equatorial cell cortex to deliver the signal that initiates formation of the cytokinetic furrow. Mutations that affect microtubule stability lead to ectopic furrowing because periphe...
متن کاملRedundant Mechanisms Recruit Actin into the Contractile Ring in Silkworm Spermatocytes
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction c...
متن کاملThree-dimensional arrangement of F-actin in the contractile ring of fission yeast
The contractile ring, which is required for cytokinesis in animal and yeast cells, consists mainly of actin filaments. Here, we investigate the directionality of the filaments in fission yeast using myosin S1 decoration and electron microscopy. The contractile ring is composed of around 1,000 to 2,000 filaments each around 0.6 mum in length. During the early stages of cytokinesis, the ring cons...
متن کاملActin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosi...
متن کاملAn Equatorial Contractile Mechanism Drives Cell Elongation but not Cell Division
Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that althoug...
متن کامل